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Abstract We introduce an ensemble of infinite causal triangulations, called the uniform in-
finite causal triangulation, and show that it is equivalent to an ensemble of infinite trees, the
uniform infinite planar tree. It is proved that in both cases the Hausdorff dimension almost
surely equals 2. The infinite causal triangulations are shown to be almost surely recurrent or,
equivalently, their spectral dimension is almost surely less than or equal to 2. We also estab-
lish that for certain reduced versions of the infinite causal triangulations the spectral dimen-
sion equals 2 both for the ensemble average and almost surely. The triangulation ensemble
we consider is equivalent to the causal dynamical triangulation model of two-dimensional
quantum gravity and therefore our results apply to that model.

Keywords Random graphs · Spectral dimension · Quantum gravity

1 Introduction

The behaviour of random walks, or equivalently diffusion, on random graphs has been stud-
ied intensively in recent times. The motivation for doing so has come from many different
areas of physics. For example these problems play a central role in the study of random
media and have been investigated both by numerical and analytic methods [7]. In this paper
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we are concerned with the ensembles of random graphs which arise in discretized quantum
gravity models (see [2] for an introduction) and we will establish some exact results for two-
dimensional versions of these models which are sufficiently tractable. These are of interest
in their own right but of course one might hope that they can also provide insight into the
higher dimensional models.

The connection between theories of gravity and ensembles of random graphs is made
through the metric tensor gμν which is the dynamical degree of freedom. In classical gen-
eral relativity the metric satisfies Einstein’s equations and for any given set of consistent
initial conditions there is a unique evolution of the metric in time. Quantization using the
path integral formalism then amounts, at least naively, to forming a quantum amplitude de-
scribing the evolution of the metric from gA

μν at t = 0 to gB
μν at t with amplitude

〈gB, t |gA, t = 0〉 =
∑

g∈Γ

exp(iS[g]/�), (1)

where Γ is the set of all possible metrics satisfying g = gA at t = 0 and g = gB at t , and
S[g] is the action (the natural choice for which is the Einstein–Hilbert action which in two
dimensions with fixed topology consists of the cosmological constant term alone). Note that
we have made a number of assumptions here concerning the consistent definition of t . To
evaluate the amplitude (1) requires a systematic way of describing the set Γ . The discretized
random surface is one way of doing this [2]. For simplicity consider a two-dimensional
manifold with euclidean metric (so this is not really gravity which should have a lorentzian
metric) and spherical topology. Such a manifold can be triangulated with N ≥ 2 triangles;
the idea is that by taking N → ∞ in an appropriate way we can recover a continuum space.
The metric is associated with the triangulation by supposing that all triangles are equilateral
of side a and defining the geodesic distance between any two points as La where L is the
number of edges in the shortest path connecting them. Then every distinct triangulation T

leads to a distinct metric and the vacuum amplitude is given by

Z =
∑

T ∈P

exp(−ST ) (2)

where we have set � = 1, ST is the discretized equivalent of the continuum action, and P is
the set of all distinct triangulations of the sphere—or equivalently the planar random graphs
with all vertices having degree 3.

Many objects of interest have been calculated in this particular model which is often
known as ‘two-dimensional euclidean quantum gravity’; it has a scaling limit in which
a → 0 and N → ∞ in such a way that a non-trivial continuum model results and we re-
fer the reader to [2] for details. However there are problems with this model as a theory
of gravity some of which seem to arise as a consequence of the absence of any notion of
causality in the theory. The Causal Dynamical Triangulation (CDT) model was invented [1]
to build in causality from the start by imposing a well defined temporal structure. This is
done by restricting P to random triangulations which can be consistently sliced perpen-
dicular to one direction (the time-like direction) and in which topology change is forbidden
for sub-graphs lying in the other (spacelike) direction—these graphs are fully defined in
Sect. 2.2 below. The idea can be applied to space-times of two or more dimensions; unfortu-
nately it becomes progressively more difficult with increasing dimension to obtain analytic
results although much has been learned by doing numerical simulations [3, 4].

The geometry of the ensembles of graphs appearing in these gravity models can be char-
acterized in part by universal quantities of which the most basic is the dimensionality. There
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are different notions of dimension. The simplest one to evaluate is usually the Hausdorff
dimension dh of a graph G, which is defined provided the volume VG(R) enclosed within a
ball of a radius R takes the form

VG(R) ∼ Rdh (3)

at large R. The spectral dimension is defined to be ds provided the probability pG(t) that a
random walker on a graph G returns to the point of origin after a time t takes the form

pG(t) ∼ t−ds/2 (4)

at large time. For the fractal geometries we are interested in it is not necessarily true that
all definitions of dimension agree. The spectral dimension probes different aspects of the
long range properties of graphs from the Hausdorff dimension; clearly it is in some sense
a measure of how easy it is for a walker to travel between different regions of the graph
rather than a static measure of how large those regions are. It is important to note that the
definitions (3) and (4) only make sense for infinite (connected) graphs. This is obvious for
(3) while for (4) it is easy to see that pG(t) tends to a non-vanishing constant for t → ∞ if
G is finite.

For fixed graphs which satisfy certain uniformity conditions it is known that

dh ≥ ds ≥ 2dh

1 + dh

(5)

provided both dimensions exist, see for example [10]. Those uniformity conditions are not
necessarily applicable to random graphs although this relation is satisfied in at least some
examples of ensemble averages of random geometries [14]. For random graphs in general
the dimensions dh and ds can be defined either by replacing the left hand sides of (3) and
(4) by their ensemble averages or, more ambitiously, by establishing that individual graphs
almost surely have a definite value of dh or ds . We shall focus mainly on the latter point of
view in this paper. The methods we employ build on those used in earlier studies of random
walk on random combs [14] and on generic random trees [13, 15]. Related results on the
recurrence of random planar graphs with bounded vertex degree have been obtained in [8].
In this paper we consider graphs that do not have bounded vertex degree, although they do
have other special characteristics, and so in some sense extend these results.

This paper is organized as follows. In Sect. 2 the ensembles of graphs that we consider in
this paper are introduced and the relationships between them and tree ensembles constructed
from Galton Watson processes explained. Section 3 discusses the Hausdorff dimension of
these ensembles while in Sect. 4 it is proved that the two-dimensional causal dynamical tri-
angulation ensemble is recurrent and therefore that its spectral dimension is bounded above
by 2. In Sect. 5 we prove that the spectral dimension in the related radially reduced model is
exactly 2. In the final section we discuss the significance of our results.

2 Ensembles of Random Graphs

A random graph (G ,μ) is a set of graphs G equipped with a probability measure μ. In
the following we assume the graphs in G to have a marked vertex called the root. We shall
discuss several measures μ or μX and will denote the corresponding expectation by 〈·〉μ

or 〈·〉X . The ensembles that we consider are all related to the generic random tree (T ,μ∞)

which was studied in [15] and which we first review.
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2.1 The Generic Random Tree

A rooted tree T is a connected planar graph consisting of vertices v of finite degree con-
nected by edges but containing no loops; the root r is a special marked vertex connected
to only one edge and the smallest rooted tree consists of the root and one other vertex. We
denote the number of edges in a tree by |T |. The set of all trees T contains the set of finite
trees Tf = ⋃

N∈N
TN where TN = {T ∈ T : |T | = N} and the set of infinite trees T∞.

A Galton Watson (GW) process is defined by offspring probabilities which are a sequence
of non-negative numbers p0 	= 0,p1,p2, . . . , with pi > 0 for at least one i ≥ 2. They are
conveniently encoded in the generating function

f (x) =
∞∑

n=0

pnx
n (6)

which satisfies f (1) = 1. We call the process critical if f ′(1) = 1 and generic if f (x) is
analytic in a neighbourhood of the unit disk. Assigning the probability pσv−1 to the event
that any vertex v 	= r has degree σv a critical GW process induces a probability distribution
μGW on Tf ,

μGW(T ) =
∏

v∈T \r
pσv−1. (7)

We will call the ensemble (Tf ,μGW) a critical Galton Watson (GW) tree.
Next we define the probability distribution μN on TN by

μN(T ) = Z−1
N

∏

v∈T \r
pσv−1 (8)

where

ZN =
∑

T ∈TN

∏

v∈T \r
pσv−1. (9)

We define the single spine trees to be the subset S of the infinite trees whose members
consist of a single infinite linear chain r, s1, s2, . . . , called the spine, to each vertex of which
are attached a finite number of finite trees by identifying their root with that vertex. An
example of a single spine tree is illustrated in Fig. 1. The following result was established
in [15].

Theorem 1 Assume that μN is defined as above as a probability measure on T where {pn}
defines a generic and critical GW process. Then

μN → μ∞ as N → ∞ (10)

where μ∞ is a probability measure on T concentrated on the set of single spine trees S .
The generating function for the probabilities for the number of finite branches at a vertex
on the spine is f ′(x). Moreover, the individual branches are independently and identically
distributed according to the original critical GW process.

The generic random tree associated to the given GW process is by definition (S ,μ∞).
In this context convergence of measures means that integrals of continuous bounded

functions on T converge, where continuity refers to a metric dT according to which two
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Fig. 1 Example of T ∈ S

trees T and T ′ are close if they coincide on sufficiently large balls centred at the root. More
precisely one can use

dT (T ,T ′) = inf

{
1

R
: BR(T ) = BR(T ′)

}
, (11)

where the ball BR(G) of radius R centred at the root of a graph G is the subgraph of G

spanned by the vertices at graph distance at most R from the root. The graph distance be-
tween two vertices in G is as usual the minimum number of edges in a path connecting
them.

Of particular interest in the following is the so-called uniform infinite planar tree [12]
corresponding to offspring probabilities

pn = 2−(n+1), n ≥ 0 (12)

which are easily seen to satisfy the requirements for a generic, critical GW tree. For this
random tree we shall use the notation μ̄N for μN and μ̄ for μ∞.

We define the height h(v) of a vertex v in a graph G as the graph distance from v to the
root; the height h(�) of an edge � in G as the minimum height of an end of �; and the height
of a finite graph G by

h(G) = max
v∈G

h(v). (13)

Given a tree T , Dk(T ) is the set of vertices at height k (so that D0 = r and D1 consists of
the unique vertex which is the neighbour of the root); the number of vertices in Dk(T ) is
denoted by |Dk(T )|, whereas |BR(T )| denotes the number of edges in BR(T ). There are a
number of useful properties of μGW and μ∞ which follow:

Lemma 1 For large R

μGW({T ∈ Tf : h(T ) > R}) = 2

f ′′(1)R
+ O(R−2). (14)

Proof This is well known and the proof is given in e.g. [17]. �

Lemma 2 There exists a constant c > 0 such that

〈|Dk|−1
〉
∞ ≤ c

k
. (15)
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Furthermore,

〈|Dk|〉∞ = (k − 1)f ′′(1) + 1, k ≥ 1, (16)

〈|Bk|〉GW = k, k ≥ 1, (17)

〈|Bk|〉∞ = 1

2
k(k − 1)f ′′(1) + k, k ≥ 1. (18)

Proof The proof is given in [15], Proof of Lemma 5 and Appendix 2. �

2.2 Causal Triangulations

In this sub-section we define the notion of a causal triangulation (CT) and recall the defini-
tion of the model of causal dynamical triangulations (CDT) introduced in [1].

We say that a graph on n vertices v1, v2, . . . , vn is a cycle if the edge set is

{(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1)}. (19)

We include the degenerate case n = 1 in which case we allow a loop so the unique edge is
(v1, v1). Let G be a rooted planar triangulation (i.e. a planar graph such that all the faces,
except possibly one, are triangles). Let S0 be the root vertex of G and Sk the set of vertices
at graph distance k from the root, k = 1,2, . . . . We say that G is a causal triangulation if
Sk together with the edges in G which join vertices in Sk , form a cycle for k < h(G) and, in
the case h(G) < ∞, if the cycle at height h(G) − 1 is decorated by attaching to each edge
a triangle whose other two edges are not shared with any other triangle and whose vertex of
order 2 belongs to the infinite face of G. The decoration of the highest cycle with triangles
is not essential to the definition of CTs but it is convenient when we come to consider the
measure assigned to the graphs. We denote by C the collection of all causal triangulations,
CK the elements in C of height K , Cf the collection of all triangulations in C of finite
height and C∞ = C \ Cf . Note that any triangulation in CK is a triangulation of the closed
disk whose boundary vertices alternate in height between K and K − 1. In this case the
exterior face is not a triangle. The elements of C∞ can be viewed as triangulations of the
plane with the property that all the vertices at a fixed graph distance from the root form a
cycle. For technical reasons that will become clear below we will assume that one of the
edges emerging from the root vertex is marked and called the root edge. In particular, this
eliminates accidental symmetries under rotations around the root vertex. An example of
G ∈ C4 is shown in Fig. 2.

Given a causal triangulation G and k < h(G) − 1 we will let Σk denote the subgraph of
G which consists of Sk and Sk+1 together with the edges joining them. Note that Σk is a
triangulation of an annulus. Furthermore, we denote the number of triangles in G by Δ(G)

and call it the area of G. Note that

Δ(Σk) = |Sk| + |Sk+1| (20)

(where |Sk| is the number of edges in Sk and |S0| = 0 by definition) and that the total area
of G ∈ Cf is even and equals

Δ(G) = 2
h(G)−1∑

k=1

|Sk(G)|. (21)
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Fig. 2 Example of G ∈ C4; the
numerical labels show the heights
of the cycles and the root and
marked edge are shown in bold

In the CDT model [1] each graph G ∈ Cf is assigned a weight

w(G) = g1+Δ(G), (22)

where g is the fugacity for triangles, and the grand canonical partition function is

Z(g) =
∑

G∈Cf

w(G). (23)

We define the corresponding probability measure on finite causal triangulations by

ρCT (G) = w(G)

Z(g)
. (24)

The function Z(g) can be computed [1] by decomposing the sum over graphs into

Z(g) =
∞∑

n=1

Z(g;n),

Z(g;n) =
∑

G∈Cn+1

g1+Δ(G).

(25)

Z(g;n) is evaluated by using (20), and counting the graphs in Cn+1 by building them up
successively from the slices {Σ0, . . . ,Σn−1}. The number of ways of connecting lk+1 vertices
in Sk+1 with lk vertices in Sk is

(
lk+lk+1−1

lk−1

)
and so, taking into account the marked edge,

Z(g;n) = g
∑

li≥1,

n≥i≥1

(
n−1∏

k=1

(
lk + lk+1 − 1

lk − 1

))
g2(l1+···+ln). (26)
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Summing over l1, and using the binomial expansion of (1 − x)−l , gives

Z(g;n) = g

(
X1

1 − X1

) ∑

li≥1,

n≥i≥2

(
n−1∏

k=2

(
lk + lk+1 − 1

lk − 1

))
X

l2
2 g2(l3+···+ln), (27)

where

Xk+1 = g2

1 − Xk

, X1 = g2. (28)

Summing successively over {l2, . . .}, we find that

Z(g;n) = g

n∏

k=1

Xk

1 − Xk

. (29)

The recursion (28) is straightforward to solve and has the following properties:

Xk ↑ X∗ = 1 − √
1 − 4g2

2
as k ↑ ∞ for g <

1

2
;

(30)
Xk = 1

2

k

k + 1
at g = 1

2
.

It follows that Z(g) is analytic in the disk |g| < 1
2 and has a critical point at g = 1

2 .
To understand the nature of the critical point it is instructive to compute the average girth,

defined to be the length of the cycle at half height, of finite surfaces of a fixed height

L(n) = Z(g;2n)−1
∑

G∈C2n

|Sn|g1+Δ(G). (31)

Slightly more involved calculations than those above yield

L(n) <
1√

1 − 4g2
. (32)

Thus for any n and g < 1
2 the average surface is like a long thin tube closed off at the root

end—it is essentially one-dimensional. However at g = 1
2 we find that

L(n) = n + 1

4
+ 1

4

1

2n + 1
. (33)

which indicates that the average surface at criticality is two-dimensional. To show that the
Hausdorff dimension dh defined in (3) is indeed 2 we need to consider the tail distribution
of large surfaces contributing to Z(g). This only makes sense at the critical point g = 1

2
since only there does the mean area of surfaces diverge due to the analyticity of Z(g) for
|g| < 1

2 . The standard way to proceed is to condition the distribution defining Z( 1
2 ) in (23)

on surfaces of fixed finite area N and take the limit N → ∞ to get the appropriate ensemble
of infinite surfaces. We do this in the next subsection by showing that the limit in question
actually is equivalent in a precise sense to the limit obtained in Theorem 1. Subsequently, in
Sect. 3, we show that dh = 2 almost surely.
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Fig. 3 The bijection from
G ∈ C to T ∈ T : the dashed
edges are assigned to T

Fig. 4 The bijection from
G ∈ C to T ∈ T : this example
shows the tree equivalent to the
triangulation of Fig. 2. The
dashed lines show the edges of
the tree, including the new edge
(r, S0)

2.3 Bijection Between CT and Planar Trees

We begin by showing that causal triangulations are in one to one correspondence with rooted
planar trees.

Let G ∈ C . We define a planar rooted tree T = β(G) inductively w.r.t. height of edges
in the following way:

1. The vertices of T are those of G whose height is at most h(G) − 1 together with a new
vertex r which is the root of T and whose only neighbour is S0.

2. All edges from S0 to S1(G) belong to T and the marked edge is the rightmost edge with
respect to the edge (r, S0).

3. For n < h(G) − 1 assign the edges emerging from a vertex v ∈ Sn(G) and ending on
Sn+1(G) an ordered integer label increasing by one each time in the clockwise direction
as shown in Fig. 3. All edges except the edge with highest label belong to T and have the
same clockwise ordering.

Figure 4 shows an example of the application of these rules. Note that if the height of a
vertex in G is n then its height in β(G) is n + 1, i.e. vertices in Sn(G) are in Dn+1(T ),
n < h(G) − 1.

Conversely, let T be a rooted planar tree. Then the inverse image G = β−1(T ) is obtained
as follows:
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1. Mark the rightmost edge connecting D1(T ) and D2(T ). Delete the root of T and the edge
joining it to D1(T ). The remaining vertices and edges of T all belong to G and D1(T )

becomes S0, the root of G.
2. For n < h(T ) insert edges joining vertices in Dn+1(T ) in the circular order determined

by the planarity of T ; this creates the sub-graphs Sn(G).
3. For every vertex v ∈ Dn(T ), 2 ≤ n ≤ h(T ) − 1, that is not of order 1 in T draw an edge

from v to a vertex in Sn(G) such that the new edge is the most clockwise emerging from
v to Sn(G) and does not cross any existing edges.

4. For every vertex v ∈ Dn(T ), 2 ≤ n ≤ h(T ) − 1, of order 1 in T draw an edge from v to
the unique vertex in Sn(G) such that the new edge does not cross any existing edges.

5. If h(T ) < ∞, decorate the edges of the cycle of maximum height with triangles.

A mapping equivalent to β is described in [19]. For G ∈ Cf these mappings are variants
of Schaeffer’s bijection [21, 23]. Indeed, deleting the edges in Sn(G) for all n and identifying
the vertices of maximal height h(G) one obtains a quadrangulation to which Schaeffer’s
bijection can be applied; here the labelling of the vertices equals the height function. As we
have seen, the bijection extends in this case to arbitrary infinite planar trees. For an extension
to more general planar quadrangulations see [9].

This construction shows that β : C → T is a bijective map from C̃N , the set of causal
triangulations of area 2N , onto TN+1 and from C∞ onto T∞. Moreover, defining the metric
dC on C by

dC (G,G′) = inf

{
1

R + 1
: BR(G) = BR(G′)

}
, (34)

the map is an isometry.
Now define the finite area probability distributions ρN corresponding to (23) and (24) at

g = 1
2 by

ρN(G) = Z̃−1
N 2−(1+Δ(G)), G ∈ C̃N, (35)

where

Z̃N =
∑

G∈C̃N

2−(1+Δ(G)). (36)

The following result gives the relationship between generic random trees and infi-
nite CTs.

Theorem 2 Let μ̄N and μ̄ be the measures defined by (8) and (10) corresponding to the
generic, critical GW process with pn = 2−(n+1), n ≥ 0. Then

ρN(G) = μ̄N (β(G)), G ∈ C̃N . (37)

The limit ρ = limN→∞ ρN exists and is a probability measure on C∞ and is given by

ρ(A) = μ̄(β(A)) (38)

for any event A ⊆ C∞.

Proof Existence of the limit and (38) follow immediately from (37) and Theorem 1. To
prove (37) consider a graph G ∈ Cf and the corresponding tree T = β(G). Every vertex in
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Si+1(G) has exactly one edge of T connecting it to Si(G) and therefore

|Si+1(G)| =
∑

v∈Di+1(T )

(σv(T ) − 1), i = 0, . . . , h(G) − 1. (39)

Hence, from (21) we have

2−(1+Δ(G)) = 1

2

h(G)−1∏

i=1

2−2|Si (G)| =
∏

v∈T \r
2−σv . (40)

Comparing this with (7) identity (37) follows. �

Note that ρN as given by (35) is the uniform distribution on C̃N , that is

ρN(G) = 1


C̃N

, G ∈ C̃N, (41)

where 
C̃N is the number of elements in C̃N (and is given by a Catalan number). For this
reason the ensemble (C , ρ) may appropriately be called the uniform infinite causal trian-
gulation. According to Theorem 1 the measure ρ is concentrated on the subset β−1(S ) of
triangulations corresponding to trees with a single spine.

A result analogous to Theorem 2 has been obtained for general planar triangulations
in [5]. Finally we observe that the present relationship between trees and CTs is not the
same as that introduced in [11]; in that case the trees do not in general belong to a generic
random tree ensemble.

2.4 Reduced Models

We now define two simplified ensembles derived from the infinite CTs. These are useful in
proving recurrence of the uniform infinite CT but also provide models which are interesting
in their own right.

Let the set R consist of all infinite graphs constructed from the non-negative integers
regarded as a graph so that n has neighbours n ± 1, except for 0 which only has 1 as a
neighbour, and so that there are Ln edges connecting n and n + 1. Note that these graphs,
an example of which is shown in Fig. 5, have multiple edges contrary to those considered
above (they are called multi-graphs in the mathematical literature).

The R ensemble is defined on R by introducing a mapping γ : C∞ → R which acts on
G ∈ C∞ by collapsing all the edges in Sk, k ≥ 1, and identifying all the vertices v ∈ Sk so
there is only one vertex at each height but all the edges connecting Sk and Sk+1 are retained.
The measure on R is then inherited from that on C∞ so that for integers 0 ≤ k1 < · · · < km

and positive integers M1, . . . ,Mm

χR({G′ ∈ R : Lki
= Mi, i = 1, . . . ,m})

= ρ({G ∈ C∞ : |Ski
(G)| + |Ski+1(G)| = Mi, i = 1, . . . ,m})

= μ̄({T ∈ S : |Dki+1(T )| + |Dki+2(T )| = Mi, i = 1 . . .m}). (42)

A related ensemble R′ is obtained by defining γ to retain only the edges connecting Sk and
Sk+1 that belong to the tree β(G) in which case the measure on R is determined by

χR′({G ∈ R : Lki
= Mi, i = 1, . . . ,m}) = μ̄({T ∈ S : |Dki+2| = Mi, i = 1, . . . ,m}). (43)
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Fig. 5 An example of G ∈ R

3 Hausdorff Dimension

As already indicated in the introduction the Hausdorff dimension of a rooted infinite graph
G is defined by

dh = lim
R→∞

log |BR(G)|
logR

(44)

provided the limit exists. For the uniform infinite causal triangulation we have the following
result.

Theorem 3 The Hausdorff dimension of a causal triangulation in C∞ is ρ-almost surely
equal to 2.

Noting that

|BR+1(β(G))| ≤ |BR(G)| ≤ 3|BR+1(β(G))|, G ∈ C∞, (45)

this theorem is a direct consequence of Theorem 1 and the following corresponding result
for generic random trees.

Proposition 1 For any generic random tree (S ,μ∞) the Hausdorff dimension of T ∈ S
is μ∞-almost surely equal to 2.

Proof We actually prove a slightly stronger statement which is the following: there exist
positive constants C1 and C2 and for μ∞-almost all trees T a constant RT > 0 such that

C1(logR)−2R2 ≤ |BR(T )| ≤ C2R
2 logR (46)

for all R ≥ RT .
We begin with the lower bound. In [15], Appendix 2, it is shown that there are positive

constants c0 and λ0 such that

μ∞({T : |BR(T )| < λR2}) ≤ e−c0λ
− 1

2 (47)

for R > 0 and 0 < λ < λ0. Hence, for every k > 0 we have

μ∞({T : |BR(T )| < k(logR)−2R2}) ≤ R−c0k
− 1

2 (48)

if R is sufficiently large. Choosing k ≡ C1 small enough it follows that

∞∑

R=1

μ∞({T : |BR(T )| < C1(logR)−2R2}) < ∞. (49)

By the Borel-Cantelli lemma we conclude that

μ∞({T : |BR(T )| < C1(logR)−2R2 for infinitely many R}) = 0 (50)

and the lower bound follows.
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In order to establish the upper bound we first prove that there exist constants C3, C4 > 0
such that

μ∞({T : |BR(T )| > λR2}) ≤ C3e
−C4λ (51)

for all λ, R > 0. This is a slight generalization of Lemma 2.2 in [6]. Let Bi
R denote the

intersection of the ball of radius R, centred at the spine vertex si , with the finite GW trees
attached to si ; then

|BR| ≤ R +
R∑

i=1

|Bi
R| (52)

so it suffices to show that

μ∞({T : |B1
R| + · · · + |BR

R | > λR2}) ≤ C3e
−C4λ. (53)

Since the |Bi
R| are independent and identically distributed random variables the Chebyshev

inequality gives, for any θ > 0,

μ∞({T : |B1
R| + · · · + |BR

R | > λR2}) = μ∞({T : eθ(|B1
R

|+···+|BR
R

|) > eθλR2})

≤ e−θλR2

〈
R∏

i=1

eθ |Bi
R

|
〉

∞
= e−θλR2(〈

eθ |B1
R

|〉
∞

)R
. (54)

With the notation of [15] we have

〈
eθ |Bi

R
|〉

∞ = gR(eθ ), (55)

where gR(z) = f ′(fR(z)) and

fK+1(z) = zf (fK(z)), f1(z) = z. (56)

Clearly (56) defines fR inductively as an increasing analytic function on [0,1] such that
fR(0) = 0 and fR(1) = 1. By the genericity condition, each fR is actually defined on a
slightly larger interval [0, bR] where bR > 1. We will now show that we can choose

bR = 1 + β

(1 + α(R − 1))2
(57)

and for z ∈ [1, bR] we have

fR(z) ≤ 1 + (1 + α(R − 1))(z − 1) (58)

for suitable constants α > 1 and β > 0. This will imply the bound (53).
We first choose ρ0 > 1 such that f (ρ0) < ∞. Since f (1) = f ′(1) = 1 there is a constant

k1 such that

f (z) ≤ z + k1(z − 1)2 (59)

for 1 ≤ z ≤ ρ0. Setting β ≤ ρ0 − 1 and

α = (1 + β)(1 + k1β) (60)

one can easily establish (58) by elementary calculations and induction.
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Choosing c > 0 sufficiently small we have

fR(ecR−2
) ≤ ek2/R (61)

by (58), where k2 > 0 is a constant. Hence,

gR(ecR−2
) ≤ ek3/R (62)

for a suitable constant k3. Now taking θ = cR−2 in (54) we obtain the inequality (53).
The upper bound now follows in a similar way to the lower bound: from (51) we have

μ∞({T : |BR| > kR2 logR}) ≤ C3

RC4k
. (63)

Choosing k large enough we conclude that

∞∑

R=1

μ∞({T : |BR| > kR2 logR}) < ∞ (64)

and the Borel-Cantelli lemma gives the upper bound for μ∞-almost every T . �

We remark that it is a trivial consequence of this result that graphs in the R ensemble or
the R′ ensemble likewise have Hausdorff dimension 2 almost surely. Moreover, defining the
annealed Hausdorff dimension of a random graph (G ,μ) by

dann
h = lim

R→∞
log 〈|BR|〉μ

logR
, (65)

we have that dann
h = 2 for any generic random tree as a consequence of Lemma 2. It follows

that this holds for the uniform infinite CT and the R and R′ ensembles as well.

4 Recurrence of the Uniform Infinite Causal Triangulation

In this section we show that random walk on graphs in the uniform infinite CT and on
graphs in the R or R′ ensembles is almost surely recurrent. We start by giving a definition
of recurrency. For a rooted graph G let ω be a random walk on G of length n starting at the
root at time 0 and let ω(t) denote the vertex where ω is located after t steps, t ≤ n. Simple
random walk is defined in the standard manner by attributing to ω the probability

pω =
n−1∏

t=0

σ−1
ω(t). (66)

The return probability is given by

pG(t) =
∑

ω:ω(t)=r

pω, (67)

and the first return probability p0
G(t) by a similar sum restricted to walks which do not

visit the root at intermediate times, ω(t ′) 	= r for 0 < t ′ < t . Note that pG(t) and p0
G(t) are
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defined for t ≤ n and are otherwise independent of n. We say that random walk on G is
recurrent if the random walk in the limit n → ∞ returns to r with probability 1, that is if

∞∑

t=1

p0
G(t) = 1, (68)

which is easily seen to be equivalent to (see (87) below)

∞∑

t=1

pG(t) = ∞. (69)

If G is not recurrent it is called transient.
There is a useful criterion for recurrency of an infinite connected graph G expressible in

terms of the effective electrical resistance between the root and infinity when G is considered
as an electrical network in which each edge has resistance 1. In the case of R and R′ the
resistance is straightforward to define as there is only one vertex at each height and it is
simply

RG (r,∞) =
∞∑

k=0

1

Lk(G)
. (70)

For G ∈ C∞ we define RG (r, ∂BK(G)) to be the resistance between the root and the vertex
vtop of the graph obtained from BK(G) by drawing in edges between all v ∈ SK(G) and a
single new vertex vtop. We then obtain RG (r,∞) by taking K to infinity. The crucial result
for our purpose is

Theorem 4 Random walk on an infinite connected rooted graph is transient if and only if
the effective resistance from the root to infinity is finite.

Proof The result is well known and a proof is given in e.g. [20].
For R and R′ (70) is sufficiently explicit but for the infinite uniform CT we need an extra

step. Define a cutset Π in an infinite rooted graph G to be a set of edges in G such that a
path from the root to infinity must include at least one member of Π . Denoting the number
of edges in Π by |Π | we then have [20, 22].

Lemma 3 (Nash-Williams) If {Πn} is a sequence of pairwise disjoint cutsets in G then

RG (r,∞) ≥
∑

n

|Πn|−1. (71)

In particular, if the right hand side is infinite, then G is recurrent.

Choosing Πn to be those edges with one end in Sn and one end in Sn+1 and applying the
lemma gives the bound for G ∈ C∞

RG(r,∞) ≥ 1

|S1| +
∞∑

k=1

1

|Sk| + |Sk+1| =
∞∑

k=0

1

Δ(Σk)
. (72)

Our proof of recurrence proceeds by establishing control over the right hand sides of (70)
and (72). First we need
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Lemma 4 In the R′ ensemble the probability that the number of edges in G ∈ R′ at height
n − 1 exceeds a fixed value K is given by

χR′({G : |Ln−1| > K}) = K + n

n

(
1 − 1

n

)K

, n > 1, (73)

while for R it is given by

χR({G : |Ln−1| > K}) = K + 2n − 1

2n − 1

(
1 − 1

2n

)K

, n > 1. (74)

In the uniform infinite CT ensemble the probability that for G ∈ C∞ the number of triangles
in Σn−1 (equivalently the number of edges connecting Sn−1 to Sn) exceeds K is given by

ρ({G : Δ(Σn−1) > K}) = K + 2n − 1

2n − 1

(
1 − 1

2n

)K

. (75)

Proof These results are essentially well known. To prove (73) note that from (43)

χR′({G : |Ln−1| > K}) = μ̄({T : |Dn| > K}) (76)

and the result then follows from Proposition 3.6 in [12]. (Note that (73) is the statement that
|Dn|−1 has the negative binomial distribution NegBin(2,1/n).) Using (42), and noting that
Δ(Σn−1) = |Sn−1| + |Sn|, we see that (75) and (74) are equivalent and, for n ≥ 2,

χR({G : |Ln−1| > K}) = μ̄({T : |Dn| + |Dn+1| > K}). (77)

Then using the proof of Proposition 3.6 in [12], (28) and (30), we have

μ̄({T : |Dn| = ln−1, |Dn+1| = K − ln−1})

= (K − ln−1)2
−K+ln−1−1

(
K − 1

ln−1 − 1

)

×
∞∑

li≥1,

n−2≥i≥1

(
n−2∏

k=1

(
lk + lk+1 − 1

lk − 1

))
4−(l1+···ln−1)

= (K − ln−1)2
−(K−ln−1)−1

(
K − 1

ln−1 − 1

)
(Xn−1)

ln−1

n−2∏

k=1

Xk

1 − Xk

= (K − ln−1)2−(K−ln−1)

n(n − 1)

(
K − 1

ln−1 − 1

)(
n − 1

2n

)ln−1

, (78)

and therefore

μ̄({T : |Dn| + |Dn+1| = K}) =
K−1∑

l=1

μT({T : |Dn| = l, |Dn+1| = K − l})

= K − 1

(2n − 1)2

(
1 − 1

2n

)K

. (79)
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The lemma follows by summing over K . (Note that (79) is the statement that |Dn|+|Dn−1|−
2 has the negative binomial distribution NegBin(2,1/(2n)).)

We can now establish the main result of this section:

Theorem 5 For a graph G in the ensembles (R, χR), (R, χR′) or (C∞, ρ) the effective
resistance between the root and infinity RG(r,∞) is almost surely infinite and random walk
therefore almost surely recurrent.

Proof We give the proof in detail for the CT case and proceed by showing that at large
enough heights n the number of triangles in slices Σn−1 almost surely does not exceed the
envelope function 2an logn where a > 1 is a constant. First define the event that the number
of triangles in Σn−1 exceeds the envelope

Aa,n = {Δ(Σn−1) > 2an logn}, n = 1,2, . . . . (80)

Then from (75) we find that

ρ(Aa,n) ≤ (1 + 2a logn)n−a, (81)

and so
∞∑

n=1

ρ(Aa,n) < ∞. (82)

Hence, the Borel-Cantelli lemma can be applied to conclude that Aa,n occurs for at most
finitely many n with probability 1, that is for all graphs G in a set of ρ-measure 1 there
exists NG < ∞ such that Δ(Σn−1) ≤ 2an logn for all n ≥ NG. In particular, for such G we
have

∞∑

n=1

1

Δ(Σn−1)
≥

∞∑

n=NG

1

2an logn
= ∞, (83)

which, combining Lemma 3 with (70) and (72), proves Theorem 5 for (R, χR) and (C∞, ρ).
To prove the theorem for (R, χR′) we replace (80) by

Aa,n = {Ln−1 > an logn}, n = 1,2, . . . (84)

and proceed as above using (73) in the next step. �

5 Spectral Dimension of the R and R′ Ensembles

We start by defining the generating functions [15]

QG(x) = 1 +
∞∑

t=1

(1 − x)
1
2 tpG(t) (85)

and

PG(x) =
∞∑

t=1

(1 − x)
1
2 tp0

G(t). (86)



876 B. Durhuus et al.

The functions QG(x) and PG(x) are related by the identity

QG(x) = 1

1 − PG(x)
. (87)

In particular, it follows from (68) that random walk on G is recurrent if and only if QG(x)

diverges for x → 0.
By Theorem 5 random walk is almost surely recurrent for the CT, R and R′ ensembles.

Assuming QG has asymptotic behaviour

QG(x) ∼ x−α, α ∈ (0,1), (88)

for small x then the return probability, pG(t), behaves asymptotically for large time as

pG(t) ∼ t−
1
2 ds , (89)

where ds is the spectral dimension of G and is related to α by a tauberian theorem through

ds = 2 − 2α. (90)

Note that if ds > 2 in (89) then QG(0) is finite and random walk on G is not recurrent. In
the borderline case ds = 2 we expect logarithmic corrections to the decay (89) of pG(t) at
large t and, if G is recurrent, QG(x) to be logarithmically divergent at small x. We refer
the reader to, for example, [16] Sect. VI.3 and VI.11 for details on tauberian and transfer
theorems. Henceforth we shall take (90) as the definition of the spectral dimension of G

where

α = lim
x→0

logQG(x)

| logx| , (91)

which we assume exists.
The annealed spectral dimension dann

s for a random graph is defined in the same way as
above by replacing QG(x) in (91) by the ensemble average.

Theorem 6 For the ensembles (R, χR) or (R, χR′) we have that dann
s = 2. Moreover, if ds

exists almost surely then its value is 2 almost surely.

We give the proof for R, that for R′ being essentially identical. To prove the theorem we
need

Lemma 5 There is a constant c > 0 such that

〈QG(x)〉R ≤ c| logx|. (92)

Proof Let PG(x;n) denote the generating function for first return to vertex n of a random
walk on a fixed graph G ∈ R which leaves n in the direction of +∞ with probability 1 and
let QG(x;n) denote the generating function for the corresponding return probabilities. The
generating function satisfies the recurrence relation

PG(x;n − 1) = (1 − x)(1 − uG(n))

1 − uG(n)PG(x;n)
, (93)
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where

uG(n) = Ln(G)

Ln−1(G) + Ln(G)
(94)

is the probability that when the walk is at n the next step is to n + 1. Defining ηG(x;n)

through

PG(x;n) = 1 − Ln(G)−1ηG(x;n) (95)

and rearranging (93) gives

1

ηG(x;n − 1)
= 1

ηG(x;n)
+ 1

Ln−1(G)
− xLn−1(G)

ηG(x;n)ηG(x;n − 1)
. (96)

It follows that for N ≥ n

1

ηG(x;n − 1)
= 1

ηG(x;N)
+

N−1∑

k=n−1

1

Lk(G)
− x

N−1∑

k=n−1

Lk(G)

ηG(x; k)ηG(x; k + 1)
. (97)

Note that since PG(x, k) < 1 we have ηG(x; k) > 0 and (97) implies that for n ≤ N

1

ηG(x;n − 1)
≤ 1

ηG(x;N)
+

N−1∑

k=n−1

1

Lk(G)
. (98)

Using (95) and (87), we then obtain

QG(x;n) ≤ Ln(G)

(
QG(x;N)

LN(G)
+

N−1∑

k=n

1

Lk(G)

)
≤ Ln(G)

(
2

xLN(G)
+

N−1∑

k=n

1

Lk(G)

)
, (99)

where we have used the trivial bound QG(x;N) ≤ 2x−1. We first maximise the quantity in
brackets in (99) by including only those edges inherited under γ (cf. (42)) from the infinite
tree whose root is at n, as shown in Fig. 6, and which is distributed according to μ̄ as a
consequence of Theorem 1. Having done this the prefactor Ln(G) is independent of the rest
of the expression and taking expectation values gives

〈QG(x;n)〉R ≤ 〈Ln(G)〉R

〈
2

x|DN−n+1| +
N−n∑

k=1

1

|Dk|

〉

μ̄

≤ c′(n + 2)

(
2

x(N − n + 1)
+

N−n∑

k=1

1

k

)
, (100)

where we have used Lemma 2 and c′ is a constant. Choosing N = [x−1] yields

〈QG(x;n)〉R ≤ c′′(n + 2)| logx| (101)

and Lemma 5 follows by setting n = 0. �

Proof of Theorem 6 Theorem 5 implies that QG(x) diverges almost surely as x → 0. Since
QG(x) is a decreasing function of x it follows that 〈QG(x)〉R and 〈QG(x)〉R′ diverge for
x → 0 and hence dann

s ≤ 2. On the other hand, Lemma 5 implies dann
s ≥ 2.
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Fig. 6 Example of a tree
contributing (through (42)) to
(99) and (100). Only the edges to
the right of the dotted boundary
line are included in the sum in
(100)

It remains to show that ds ≥ 2 almost surely. We exploit the fact that the logarithmic
divergence of the ensemble average given by Lemma 5 implies that there cannot be a set
of non-zero measure of graphs whose QG(x) diverges faster than logarithmically as x → 0.
For 0 < x < 1 let

Ax = {G ∈ R : QG(x) > 1}.
Since QG(x) diverges almost surely and is decreasing in x the sets Ax increase to a set of
measure 1 so that χR(Ax) → 1 for x → 0. From Jensen’s inequality we get

∫

Ax

logQG(x)dχR ≤ χR(Ax) log

(
(χR(Ax))

−1
∫

Ax

QG(x)dχR

)

≤ χR(Ax) log
(
(χR(Ax))

−1 〈QG(x)〉R

)
. (102)

Dividing by | logx| and using Lemma 5 then gives

lim
x→0

〈
max

{
logQG(x)

| logx| ,0

}〉

R

= 0. (103)

Assuming, as we do, that the limit (91) exists almost surely this shows by the dominated
convergence theorem that the limit α is non-positive, that is ds ≥ 2 almost surely. �

Remark 1 Simple random walk on a graph G ∈ R can equivalently be considered as (non-
simple) random walk on the non-negative integers with transition probabilities αn = Ln

Ln+Ln−1

to go from n to n + 1 and βn = Ln−1
Ln+Ln−1

to go from n to n − 1 for n ≥ 1 and probability
α0 = 1 to go from 0 to 1. For general αn,βn ≥ 0 with αn + βn = 1 such a process is called a
birth and death process and is well known (see e.g. [18]) to be recurrent if and only if

∞∑

n=1

1

Ln

= ∞ where Ln =
n∏

k=1

αk

βk

. (104)

Clearly, the proof of almost sure recurrence of the R and R′ ensembles could have been based
on this observation instead of the Nash-Williams criterion. The estimate for the generating
function QG(x) for return probabilities obtained in the proof of Lemma 5 immediately gen-
eralises to arbitrary birth and death processes in the form

Q(x) ≤ 1 +
N−1∑

n=1

1

Ln

+ Q(x,N)

LN

, N ≥ 1, (105)
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where Q(x) = Q(x;0) and Q(x;N) denotes the generating function for return probabilities
for the random walk with transition probabilities α′

n, β
′
n given by α′

n = αn+N . This in turn
can be used to obtain an estimate on the spectral dimension of the generalised random walk
in terms of the decay rate of L−1

n for large n. In particular, if

Ln ∼ nη, η < 1, (106)

then using the bound QN(x) ≤ 2
x

and setting N = [x−1] one obtains

QG(x) ≤ cxη−1 (107)

for some constant c > 0. This implies that the spectral dimension ds obeys

ds ≥ 2η. (108)

However, this bound is generally not saturated as is seen from the example of the simple
random walk on the non-negative integers, where η = 0 and ds = 1. But in the limiting case
η = 1 we do get an optimal bound as shown above.

6 Conclusions

We have shown that the spectral dimension of the uniform infinite causal triangulation is
bounded above by 2 almost surely. This result is compatible with the general result [8] that
random planar graphs are almost surely recurrent if the degree of vertices is bounded and
certain uniformity assumptions are satisfied. However, the uniform infinite CT does not sat-
isfy these conditions; for example, although high degree vertices are relatively improbable,
the vertex degree is not bounded. We have also shown that the Hausdorff dimension is ex-
actly 2 almost surely so these graphs satisfy the bound

ds ≤ dh (109)

almost surely even though they do not necessarily obey the uniformity assumptions of [10].
The related R and R′ reduced models have spectral and Hausdorff dimension exactly two
almost surely and therefore saturate the bound (109).

It is natural to conjecture that the spectral dimension of the uniform infinite CT equals
2 almost surely. The best lower bound known to us derives from a comparison with the
uniform infinite planar tree, which is known to have spectral dimension 4/3 [6, 15]. Indeed,
deleting edges in a graph decreases the Laplace operator associated with the graph and
thus decreases the spectral dimension. Hence, deleting the edges in a causal triangulation G

that do not belong to the corresponding tree β(G) we get from Theorem 2 that the spectral
dimension of the uniform infinite CT is at least 4/3. By a similar argument one can show that
the spectral dimension of the R ensemble provides an upper bound on that of the uniform
infinite CT. One possible strategy to prove the conjecture would be to gain better control of
the error represented by this upper bound.

It is worth noting that most of the results we have proved would go through if β(G)

were in any generic random tree ensemble; only the proof of Lemma 4 uses the fact that
we are dealing with the uniform infinite tree ensemble, but this is just a technicality. For
example [11] considers an action generalized from (22) to include a dimer-like contribution,
controlled by a fugacity a, which mimics some features of a higher dimensional curvature
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term in the action. This model at its critical point maps to an infinite random tree ensemble
with the offspring probabilities

p0 = g,

pn = a−2gn+1,
(110)

where g = a(1 + a)−1 (note that when a = 1 and the dimers have no effect we just recover
the uniform infinite random tree); our results therefore extend the observation of universal
a-independent features made in [11]. One can check that any GW tree with off-spring prob-
abilities pn corresponds via β to a CT model with ultralocal action in which each vertex v

contributes the factor

pσf (v)−1g
σv (111)

to the weight, where σf (v) is the forward degree of v ∈ G. If the GW tree is critical the
CT model is critical at g = 1. So there is a whole universality class of surface models based
on the generic random trees and all having ds ≤ 2 and dh = 2. This would be even more
interesting if it were to transpire that they all have ds = 2 exactly.
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